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Droplet spindown in a high-temperature 
gas environment 
Jun Xin* and Constantine M. Megaridis 
Depar tmen t  of Mechan ica l  Eng ineer ing ,  The Univers i ty  of I l l ino is at Chicago, Chicago, IL, USA 

The spindown and heating of a spherical droplet in an initially undisturbed infinite fluid is 
investigated by means of a numerical model based on finite-difference discretization 
techniques. The nonevaporating droplet enters the hot gas whi le rotating about a diameter 
and has no translational motion with respect to the suspending medium. Special attention 
is given to the transient secondary (nonrotational) motion developed as a result of shear 
interaction between the two phases. The results indicate that for droplet sizes and rotation 
frequencies representative of droplet combustion applications; i.e., Reynolds ~ O(0.1), the 
secondary motion in both phases remains weak and heat transport is conduction-dominated. 
On the other hand, the secondary motion is strengthened with increased values of the 
rotational Reynolds number. The characteristic t ime for droplet spindown is found to be 
proportional to the square of the droplet radius. The results also show that the rotational 
deceleration time is of the same order of magnitude with the translational response time of 
the droplet. Finally, the thermocapil lary stress effects on fluid dynamics and heat transfer 
are investigated in this f low configuration. © 1996 by Elsevier Science Inc. 
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Introduction 

Droplet phenomena are pertinent to a wide variety of physical 
processes ranging from atmospheric transport of rain droplets to 
spray cooling and liquid fuel evaporation and combustion. A 
significant percentage of former investigations involves situations 
where the droplets are quiescent or have a relative translational 
velocity with respect to the surrounding medium. On the other 
hand, a relatively small number of studies has concentrated on 
rotating droplet configurations. In spray applications, either be- 
cause of the atomizer design and/or  the highly turbulent ambi- 
ent flow, the droplets may also acquire an angular velocity about 
their own axis. Considering that most practical flows are turbu- 
lent and feature high levels of fluctuating vorticity (Tennekes and 
Lumley 1972), it is important to evaluate the role of droplet 
rotation in the internal transport processes and, eventually, in 
droplet gasification. 

Rotating-sphere flows have been utilized to provide insight on 
the transport phenomena around a spinning droplet. The ambi- 
ent flow induced by a rotating sphere--which possesses a uni- 
form angular velocity about a diameter in a fluid at rest--is  of 
intrinsic interest in the fields of meteorology and astrophysics, 
amongst others, and has received attention theoretically, experi- 
mentally, and numerically. The earliest work in this subject dates 
back to one and one-half centuries ago. Stokes (1845) considered 
the problem of a slowly rotating sphere with a small Reynolds 
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number (Reg = r21"~pg/lXg) and presented the first approximate 
theoretical results. For small values of Reg, better approxima- 
tions to the solution in terms of powers of Reg were obtained by 
Collins (1955), Thomas and Walters (1964), and Takagi (1977). 
At large values of Reg, using boundary-layer approximations, the 
flow engendered by a rotating sphere was investigated theoreti- 
cally by Howarth (1951), Nigam (1954), Kreith et al. (1963), and 
Banks (1976). Also by using a series approach, Dennis et al. 
(1980) determined the steady flow induced by a rotating sphere 
at low and moderate Reynolds numbers. In another investigation 
conducted by Dennis et al. (1981), the Navier-Stokes equations 
were solved numerically by means of a finite-difference method. 
The steady flow was studied for Reynolds numbers in the range 
from 1 to 5000. 

In all of the above investigations of the ambient flows induced 
by a rotating sphere, the transients were not considered. Dennis 
and Ingham (1979) used a series truncation method to investigate 
the laminar boundary layer on an impulsively started rotating 
sphere. Finally, experimental studies on the ambient flows in- 
duced by a rotating sphere were conducted by Kreith et al. 
(1963), Kobashi (1957), Sawatzki (1970) and Kohama and 
Kobayashi (1983). 

Megaridis et al. (1994) used a suspended droplet configura- 
tion to examine the droplet internal circulation imparted by 
surface rotation. It was shown that the steady-state motion 
established from spatially nonuniform surface rotation has a 
helical character and bears little resemblance to the toroidal 
internal flows developed within droplets under axisymmetric 
conditions. 

Although the influence of axisymmetric ambient flows on 
droplet evaporation and combustion rates has been examined in 
detail (see review articles by Law 1982; Faeth 1983; Sirignano 
1983, 1993; Dwyer 1989, and references cited therein), little 
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attention has been paid to the effects of rotation on droplet 
combustion dynamics. Only until recently and under steady rotat- 
ing conditions, the influence of spinning on droplet vaporization 
has been investigated experimentally by Pearlman and Sohrab 
(1991) and theoretically by Lozinski and Matalon (1992). Both 
studies concluded that the induced secondary flow in the gas 
enhances the vaporization rate and shortens the droplet lifetime. 
From the subsequent analytical results of Lozinski and Matalon 
(1994), the reduction of a rotating-droplet lifetime with respect 
to quiescent conditions is given by the factor ( 1 -  
0.4 Re4pr~SC/K), where Reg is the rotational Reynolds number, 
Prg the gaseous Prandtl number, C a correction factor to the 
burning rate, and K the vaporization constant. In most practical 
spray systems, the rotational Reynolds number is small; for 
example, for a 200 ixm diameter droplet rotating at 100 Hz in 1 
atm and 1000 K air, Reg < 0.1. According to this formula and 
because C is also a small quantity, the effect of rotation on the 
droplet lifetime is very limited. 

Hou and Lin (1993) examined the influence of flow rotation 
on droplet combustion and evaporation using a burning liquid- 
pool experimental system and a numerical model considering a 
nonreactive, rotating stagnation point flow. They showed that 
both convection and diffusion transports are weakened by flow 
rotation, resulting in the suppression of the evaporation strength 
of the liquid. 

Xin and Megaridis (1996) addressed the droplet/gas interac- 
tions in nonisothermal rotating flows using a concentric tube /  
droplet array configuration. Under the conditions considered in 
that study, initially quiescent droplets were rotationally acceler- 
ated within relatively short time periods compared to their esti- 
mated evaporation lifetimes, and the characteristic times for 
transient heating and spinup were of comparable magnitude. 
Finally, the effects of rotation on droplet heating were found to 
be insignificant for small droplets; i.e., 100 v~m or smaller, and 
the corresponding low values of rotational Reynolds numbers. 

A typical droplet combustion event starts with liquid heatup, 
during which vaporization is weak (negligible for low-volatility 
fuels). Subsequently, vapor buildup and ignition occurs, leading 
to the stage where vigorous vaporization persists until the end of 
the droplet lifetime. The liquid heatup period is important, 
because it determines the initial conditions for the subsequent 

events. To this end, examination of droplet transient heatup in 
the absence of evaporation can provide useful insight in droplet 
combustion. The current study investigates the situation where a 
rotating nonevaporating spherical droplet is suddenly exposed to 
a quiescent hot gas. The axis of rotation does not change direc- 
tion with time, and no translational velocity is assumed between 
the two phases. After injection, the angular velocity of the 
rotating droplet decays gradually due to the shear stress on the 
liquid-gas interface, while the surrounding gas is set into motion 
through its contact with the decelerating spinning droplet. A 
description of the flow field in both phases is presented in the 
paper, and special consideration is given to the energy transport 
under these circumstances. Finally, the effect of thermocapillary 
motion along the droplet surface is examined, and its implica- 
tions on fluid and heat transport are discussed. 

Model definition 

Figure 1 illustrates the flow configuration for the rotating droplet 
along with the employed notation. The gaseous medium is as- 
sumed to be initially quiescent. Both liquid and gas phases are 
incompressible with constant thermophysical properties. The flow 
is assumed to be symmetric about the axis of rotation x, and 
external body forces are neglected. While a complete treatment 
of the fluid dynamical and heat transport phenomena is consid- 
ered in this investigation, liquid evaporation has not been mod- 
eled. In that respect, the results of this work are relevant to 
nonvolatile liquids. However, the effect of rotation on heat 
transport rates may provide insight to subsequent investigations 
involving evaporating fuels. 

The following mathematical equations govern the fluid and 
energy transport both in and around the droplet. For the addi- 
tional steady-state calculations involving a rotating solid sphere, 
only the external flow equations were solved. The governing 
equations and boundary conditions are given in nondimensional 
form using the droplet radius r 0 as the characteristic length, 
fl0r 0 as the characteristic velocity, 1 / l l  0 as the characteristic 
time, and pg(fl0r0) 2 and p~(II0r0) a as the characteristic pres- 
sures for the gas and liquid phases, respectively. 

Notation 

Cp specific heat 
k heat conductivity 
M dimensionless torque, Equation 25 
Nu Nusselt number 
Pg dimensionless gas pressure, normalized with respect to 

pg(t~oro )2 
Pl dimensionless liquid pressure, normalized with respect 

to pt(floro) 2 
Prg gas-phase Prandtl number, ~gcp, g/kg 
Prt liquid-phase Prandtl number, Ixlcp, l/kl 
r dimensionless radial coordinate, normalized with re- 

spect to r 0 
r 0 droplet/sphere radius 
Reg rotational gas Reynolds number, pgflor2/p,g 
Re l rotational 2 liquid Reynolds number, Pl~oro/Ixl 
t dimensional time 
T temperature 
v velocity, normalized with respect to flor o 
x axis of rotation 

Greek 

"V - dtr/dT 
0 polar coordinate (collatitude) 
Ix dynamic viscosity 
p density 
cr surface tension coefficient 

dimensionless time; normalized with respect to 1 / I I  0 
r c characteristic deceleration time 
q~ azimuthal coordinate 
II angular velocity 

Subscripts 

c characteristic; also critical 
g gas 
l liquid 
r radial; also reference 
s droplet interface 
0 polar 
~p azimuthal 
0 initial 

infinity 
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Figure I Schematic of rotational flow configuration; the 
spherical coordinate system (r, O, c~) employed in the formu- 
lation is displayed; the axis of rotation coincides with the 
x-axis 

Governing equations (in spherical coordinates) 

• Gas phase: 
continuity: 

1 0 1 0 
r 2 Or (r2Cr'g) + r sin 0 O0 (v°'gsin O) = 0 (1) 

r-momentum: 

O"r,g OVr,g "O,g OVr,g Vo,g2 _1_ V~,g2 
+Vr g + - - -  

Or ' Or r 00 r 

1 OPg F--L[Ltr20"r'gl 
Or Reg r e [ Or ~ Or ] 

1 ~___~( OVa,g) Ovo,g 
+ s i n 0  sin0 00 - 2 V r , ~ - 2  00 - 2Vo,gCOt 0] 

(2) 

O-momentum: 

OVo,g O"O,g Vo,g O"O,g V r , g . O , g  - -  V:,gcot 0 
- - + " r , g  + - - - -  }- Or Or r O0 r 

1 OP, + - - 1  l [ ~ ( r  2ov0,,/ 
r aO R e g ~ - [ 0 r ~  Or } 

1 a_(sinoO.O,g I + 2 O"r'g Vo,g ] 
+ s i n 0  00~ 00 ] 00 sin20 J 

(3) 

~-momentum: 

OV~.g O.~,g Vo.g OV~,g Vr,gV~,g + .o.gV~,gCOt 0 
- - + V r , g  q- - -  - -  q- 

Or Or r O0 r 

1 I [ 0 (rZOV.,,) 1 0 [ OV~g~ V.,g ] 
R % r  2 -~r\ 7 / + s i - - - ~ - 0 0 - 0 t s i n O - - ~ 0 ' ~ ) - s i - - - ~ ]  

(4) 

energy: 

or, or, 
0"? "b " r ' g -~-r JC - -  

Vo,g OTg 1 1 [ 0 [ 20Tg~ 

r 00 RegPrg rE r- '~r  ) 

+ si---~ - ~  sin0 (5) 

• Liquidphase: 
continuity: 

1 0 1 O 
r 2 Or (rEVr' l )  + r sin~ 00 (vodsin 0) = 0 (6) 

r-momentum: 

OVr,l OVr,l Vo,l OUr, 1 V20,l + V~p,12 
[- Vr, l -t- 

Or Or r O0 r 

1 OPt _ _ L [  O_~[r20"r,, t - + 
Or Re t r 2 [ Or ~ Or ] 

1 °"'t  .o,, ] + sin----O sin 00 - 2vr't - 2 00 - 2vo,tcot 0 

(7) 

O-momentum: 

OVo,I 

O'r 

O"O,l Uo,l OVo,l V r , l V o ,  l - -  V2,1cot 0 
- -  + Ur,l Or + + r O0 r 

1 ON l 

r 00 
1 1 [ 0  (r2OVol 1 

1 :°o")+ sin o] + sin-----O 0--0 sin 0 0 20vr't v°'l (8) 

~-momentum : 

OV~,l 0"~.1 Vo,l OV~p,I Ur,lU~,l + Vo,lV~,ICOt 0 
- -  "q- Ur,l 4 }- 

0~ Or r 00 r 

= !  1[ lr2<,'t 
Rel r  2L0r \  Or ] + ~ 0 - - ~ -  ) - sin20 J 

(9) 

energy: 

oT~ OT~ Vo,t OT~ 
OT b Vr,~-~r + r O0 

_ 1 l [0__ / r20T~/  
RetPr  / r 2 [ Or ~ Or ] 

1 
+ s i - ~  0-0 sin 0-~-  (lO) 

Boundary conditions 
The conditions at the gas/droplet interface include continuity of 
polar and azimuthal shear stress, polar and azimuthal velocity 
(no slip), heat flux and temperature. No fluid is allowed to cross 
the liquid surface (nonevaporating droplets); therefore, the nor- 
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mal velocities above and below the interface are zero. The 
subscript s below indicates surface conditions. 

Or r s Or r s 

(O ' Or s 

Vo,l, s = Uo,g,s (13) 

V~,l, s = v~,g,s (14) 

~ r  l s  = g~--~r i s  (15) 

Tt, , =Tg,~ (16) 

The pressure on both sides of the droplet interface is calculated 
from the corresponding momentum equation in the radial direc- 
tion using the most recently calculated values of the velocity 
field. 

The liquid and gas flow boundary conditions on the rotation 
axis and the symmetry plane are 

05 ov,,~ o~ 
O0 O0 00 = v°'t  = v~'t = 0; 0 = 0, 0 < r < 1 (17) 

aPt Ovr j  aTt Ov, , t  ~r 
O0 O0 00 vo,t = O-----ff-=O; O = ~ - , O < r < l  (18) 

ovr,  o r  s 
0-~ = 190 00 Vo'g=U~'g=O; 0 =0,  1 < r  <r~ (19) 

OPg OVr,g OT 8 Ov~p,g "IT 
O--O O0 O0 V°'g = O0 =0;  O = ~ - , l < r < r ~  

(20) 

Finally, a zero radial flux condition ( d / d r  = 0) was imple- 
mented at the outer boundary of the computational domain 
(r - r~o). 

Initial conditions 

The gas phase is initially quiescent; i.e., vr, g = vo, g = v~,g = O. 
The initial gas pressure and temperature are given by 

P0 
eg pg'l'~0r0 " 2 ' 1 ,  ) Tg = 1000 K (21) 

where P0 is the pressure of the undisturbed environment (one 
atmosphere). The liquid droplet  is assumed to be initially in a 
rigid-body rotation around a diameter with an angular velocity 
130` Consequently, within the droplet 

v~ , t=rs inO,  Ur,l=Uo,l=O (22) 

P l = P l , o + l r 2 s i n 2 0  (23) 

/ ' l=  280K (24) 

where the additive function Pt,0 is determined from the initial 
balance of the normal stress component at the liquid-gas inter- 
face (Lozinski and Matalon 1992). 

Method of solution 

The solution of the system of governing equations was performed 
numerically using finite-difference discretization techniques. The 
equations were discretized spatially on a staggered mesh. Central 
differencing was employed for the diffusion terms, while upwind 
differentiation was employed for the convection terms. Forward 
differencing was employed in the temporal discretization. The 
continuity and momentum equations in which the pressure ap- 
pears (i.e.; r and 0 components) were solved using the time- 
splitting method; Ferziger (1977), Dukowicz (1980). The ~p- 
momentum and energy equations were solved implicitly at each 
time step, with the most recent values used for all other field 
variables. The specifics of the time-splitting algorithm for this 
problem are given in an earlier publication (Megaridis et al. 
1994). 

Results and discussion 

First, the accuracy of the present model is tested by considering 
the flow induced by a steadily rotating sphere which has been 
well characterized in past investigations. Subsequently, the tran- 
sient gas/droplet interactions are examined in the problem of 
interest. Finally, the thermocapillary effect on fluid dynamics and 
heat transfer is discussed. 

Isothermal f low induced by a steadily rotating sphere 

This flow configuration involves an infinite quiescent fluid sud- 
denly (r = 0) disturbed by an impulsively started rotating sphere. 
A shear-induced motion is thus induced in the surrounding fluid, 
and as time proceeds, a steady state is approached. The transient 
development of the secondary (nonrotational) motion induced in 
the gas phase for Reynolds number 50 is shown in Figure 2 in 
terms of instantaneous particle pathline projections on an az- 
imuthal plane at four different instances; r = 2.5, 7.5, 15, and 25. 
It is apparent that the flow outside the sphere forms gradually. 
Early on (Figure 2A), the pathlines are tightly clustered near the 
sphere surface, as the shear-induced flow is confined mainly to 
that region. As momentum is continuously transferred from the 
sphere to its neighboring fluid, the dosed pathlines move farther 
away from the sphere, and some break at the outer boundary 
(Figure 2B). The main feature of the ambient fluid motion is an 
inflow near the pole, which is balanced by an outflow along the 
equator. Based on Figure 2, the outflow region at the boundary 
near the equatorial plane becomes narrower as time proceeds. 
Under these conditions, it takes approximately until dimension- 
less time 45 for steady state to develop in the gas phase. The 
secondary motion at steady state is very similar to that depicted 
in Figure 2D. 

We now consider one flow quantity which can be compared 
with available experimental measurements. The torque required 
to keep the sphere rotating at a constant angular velocity fI in a 
fluid at rest has been quantified in previous papers studying this 
problem. Therefore, the values of torque are used to examine the 
grid insensitivity of the results and verify the model. The torque 
is normalized with respect to the quantity (1/2)pgrSotI a, and its 
nondimensional form is 

qr 

( sin20d0r  25, 
with Re s = p g l ) r 2 / ~ g .  
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Figure 2 Transient secondary (nonrotational) motion in the gas phase as induced by a steadily rotating sphere wi th a Reynolds 
number 50; the instantaneous pathlines projected on an azimuthal plane are shown at four different instances: (A) • = 2.5, (B) 

= 7.5, (C) • = 15, and (D) ~ = 25 

Table 1 Steady state values of torque for different grids 

45 × 20 65 × 25 75 x 30 

M 1.476 1,55 1.558 

Numerical calculations were performed for the values of 
Reg = 1, 50, 100, 500, and 2000. The Reg = 50 calculations were 
performed for three different grids: 45 (along radial coordinate) 
x 20 (along polar coordinate), 65 × 25, and 75 × 30 in a spherical 
computational domain with an outer boundary located at twelve 
sphere radii from the sphere center. The location of the outer 
boundary was chosen after it was verified that variations of flow 
variables were very slow beyond ten sphere radii. Consequently, 
zero radial gradients were imposed on all variables at the outer 
boundary of the computational domain. The time-dependent 
solution converged asymptotically to a steady state. The calcu- 
lated steady-state values of M for each of the three different 
grids are shown in Table 1. The dimensionless torque of the 
45 x 20 grid differs by 5% from the 65 x 25 grid, while the value 
of M for the 75 x 30 grid differs only by 0.5% from the 65 x 25 

grid. Therefore, the 65 × 25 grid was chosen to conduct the 
model validation comparisons with previous studies (Takagi 1977; 
Dennis et al. 1980, 1981; Sawatzki 1970). 

The dimensionless torque at steady state is given in Table 2 
for various values of Reg. An additional quantity (0c; critical 
angle) is also given in that table. The critical angle 0 c at a 
specific distance from the sphere is defined as the polar coordi- 
nate where the surrounding fluid changes its direction from 
inflow (towards the sphere) to outflow (away from the sphere). In 
the comparisons of Table 2, the critical angle was determined at 
a distance of 1.2r 0 from the sphere center (0.2r 0 from the 
surface). As seen in Table 2, the calculated asymptotic results 
show excellent agreement with previously published data over a 
wide range of Reg. It is noted that due to limitations of the series 
method, no data for large Reynolds numbers are available in 
Takagi (1977) and Dennis et al. (1980). 

The variation of 0c shown in Table 2 indicates that the region 
of inflow increases with Reg, thus causing a corresponding de- 
crease of the outflow region near the equator. It should be noted 
that as the Reynolds number increases, the boundary layer on 
the sphere surface becomes thinner. Thus, it is necessary to 

Table 2 Steady state values of torque and critical angle at various Reynolds numbers 

Reg 

Dennis et al. (1980)  

Takagi (1977), M M 9 c Dennis et al. (1981 ), M 

This study 

Sawatzki (1970), M M e c 

1 50.307 50.309 54.8 50.305 
50 1.554 69.4 1.554 

1OO 0.966 73.8 0.966 
500 0.348 

2000 0.158 

1.55 
0.966 
0.35 
0.16 

50.7 
1.55 
0.954 
0.367 
0.15 

53.8 
67.45 
73.6 
77.7 
80.8 
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choose finer mesh sizes near the sphere surface for larger values 
of Reg. The 65 × 25 grid was used for Reg = 1, 50, and 100, while 
a grid 90 × 25 was used for Reg = 500 and 2000. 

Rotationally decelerating droplets with heat transfer 

In this flow configuration, a spinning droplet is suddenly placed 
in a hot, initially quiescent, gaseous environment. At time zero, 
the droplet internal motion is a solid-body rotation. Due to shear 
stresses on the gas/liquid interface, the rotation speed of the 
droplet decays gradually, while the surrounding gas is set into 
motion. Unlike the case of a sphere rotating with constant 
angular velocity (where a steady state is eventually reached in the 
gas), the induced gas secondary motion in the current problem 
achieves maximum strength, and decays thereon as the angular 
velocity of the droplet decreases. Meanwhile, the fluid inside the 
droplet is gradually heated up. 

In most spray applications, the size of droplets is O(100 izm), 
and the typical frequency of similar size turbulent eddies is 
O(100 Hz). As a result, the corresponding gas-phase Reynolds 
number is small. For example, for a 200-p~m diameter droplet 
rotating at 100 Hz in 1 atm and 1000 K air, Reg < 0.1. Conse- 
quently, the calculations described below focus on small values of 
Reg as being representative of spray combustion applications. It 
should be noted that the corresponding liquid Reynolds numbers 
are two orders of magnitude larger than the gas Reynolds num- 
bers. Because the Reynolds number is small in the flow configu- 
ration considered in this section, the 65 × 25 grid was used in the 
gas phase, along with the 16 × 25 grid in the liquid phase. 

For the base case, the Reynolds number Reg = pgOorg/iXg 
was selected to be 0.41. This value corresponds to a droplet 
radius of 300 i~m, initial rotation frequency 30 Hz, ambient 
temperature 1000 K, and ambient pressure 1 atm. These ambient 
conditions also correspond to Prg = 0.68 and Pr t = 8. It is empha- 
sized that the base case results in their nondimensional form are 
also applicable for other combinations of droplet sizes and rota- 
tion frequencies, as long as the product fl0r ~ and the ambient 
conditions remain unchanged. The liquid considered is n-decane, 
as being representative of low-volatility hydrocarbon fuels. 

The transient azimuthal velocity component in both phases at 
0 = 44 ° is shown as a function of radial position in Figure 3A. 
The rotational velocity on the droplet surface gradually de- 
creases, while the extent of the affected gaseous region remains 
nearly constant (r < 5). Within that region, the azimuthal gas 
velocity decreases monotonically in time with the exception of 
the very early stages during which the quiescent gas adapts to the 
droplet rotation. Because of the higher liquid viscosity, the 
azimuthal velocity profile in the droplet interior is almost linear 
with respect to r, which also indicates that momentum transfer in 
the liquid is relatively fast. Figure 3B displays the transient radial 
variation of the polar velocity component in both phases at 
0 = 44 °. It is seen that the strength of this component reaches its 
peak at r = 2.4 and then decreases gradually. Also, the polar 
velocities on the droplet surface remain negative, which indicates 
that the surface liquid moves from the equator to the pole. In 
contrast, the bulk gas flow is directed from the pole to the 
equator (see Figure 2), although the gas does move from the 
equator to the pole in the vicinity of the droplet surface (see 
Figure 3B). This trend supports the view that the secondary 
motion within the droplet is dominated by the deceleration 
mechanisms. Overall, however, the polar velocity component is 
small, thus suggesting that nonrotational motion in both phases 
is weak. 

The temporal variations of the azimuthal velocity component 
at several representative locations in both phases are shown in 
Figure 4. Three of these locations (B, C, D) lie along a radius at 
0 = 45 °, with the fourth one being on the equator; 0 = 90 °. 
Locations A and C are on the droplet surface. It is apparent (see 
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Figure 3 Transient velocity radial distributions in liquid and 
gas phases at 0 = 44 ° for Reg = 0.41; (A) azimuthal velocity 
component, (B) polar velocity component 

curves A, B, and C) that rotational velocities in the liquid phase 
decrease monotonically with time. For the gas phase, the az- 
imuthal velocity values increase early on due to the momentum 
transferred from the spinning droplet, reach a maximum (T ~ 2.4 
at D), and then decrease steadily. 

The azimuthal and polar shear stresses on the droplet surface 
are shown in Figure 5 (A and B, respectively). As expected, 
because the azimuthal direction is the primary direction of fluid 
motion, the corresponding shear stress is much larger than its 

= O k  . . . .  L . . . .  i • • • • 
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v,  014 / "  ........................ 12~.~:.~.." .......... ....................... 
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Figure 4 Temporal variations of the azimuthal velocity com- 
ponent at several representative locations (marked on inset) 
in both phases of the base case calculation; Reg = 0.41 
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Figure 5 Transient azimuthal  (A) and polar (B) shear stress 
var iat ions on the gas/l iquid in ter face for Re a = 0.41 

polar counterpart. During the examined time period (r _< 18.6), 
the former is two orders of magnitude higher than the latter. 
Initially, the azimuthal shear stress is very high due to the sudden 
exposure of the spinning droplet to the quiescent ambient gas. 
As momentum is transfered from the droplet to the gas and the 
droplet is slowed down, the azimuthal shear stress decreases 
monotonically in magnitude. As a consequence of the initial 
solid-body rotation, the polar shear stress is zero at r = 0. AS the 
induced secondary motion develops within the gaseous environ- 
ment, the polar shear stress increases and achieves a maximum 
at • = 2.4. Thereon, it decreases as the flow engendered in the 
gas phase decays. 

The polar profiles of rotation frequency and azimuthal veloc- 
ity component on the gas/liquid interface are illustrated in 
Figure 6 for three different instances of the simulation; namely, 

= 2.4, 12, and 18.6. From this figure, the gradual decay of the 
azimuthal velocity component on the droplet surface is apparent 
(see v~,, s curves). The local rotation frequency fs on the droplet 
surface shows only weak variation with polar angle. At • = 18.6, 
the droplet surface has decelerated to half of its initial rotation 
frequency (30 Hz). 

The secondary motion in the gas phase around the droplet is 
shown in Figure 7A in terms of instantaneous particle pathline 
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veloci ty component  on the gas/ l iqu id  inter face for th ree  dif- 
fe rent  instances of the  base case simulat ion; • = 2.4, 12, 
and 1 8.6. 

projections on an azimuthal plane at three different instances; 
= 2.4, 12, and 18.6. Similar to the ambient flow driven by a 

rotating solid sphere (Figure 2), the inflow at the pole is balanced 
by an outflow near the equator. It is also apparent that the flow 
region expands gradually along 0 = 45 ° due to momentum diffu- 
sion. The secondary flow in the droplet interior is exemplified by 
that depicted in Figure 7B ('r = 12). Due to viscous shear stresses 
on the interface, the droplet-surface rotation speed is reduced 
gradually, and the pressure balance with the centrifugal forces is 
disturbed. The clockwise direction of the secondary flow in the 
droplet interior suggests that this motion is dominated by the 
liquid deceleration mechanisms. It is noted that the projected 
motion seen in Figure 7B is superimposed on the primary rota- 
tional (azimuthal) motion. Thus, a typical liquid element starting 
near the equatorial plane below the droplet surface follows a 
spiraling motion towards the pole along this surface and spirals 
inward from the pole to the droplet center. Subsequently, this 
liquid element turns away from the axis of rotation and winds 
around this axis until it reaches its original position near the 
droplet surface. The droplet internal circulation described above 
is very similar to that visualized by Wimmer (1988) who exam- 
ined experimentally unsteady liquid flows within rotating spheres. 
This internal flow pattern also resembles the one determined 
analytically by Lozinski and Matalon (1993). However, the quali- 
tatively similar motion reported in the work of Lozinski and 
Matalon (1993) is due to thermocapillary forces established on 
the nonisothermal surface of a droplet rotated in a rigid-body 
fashion. Finally, the droplet internal circulation during spindown 
as seen in this study is similar to that induced by spatially 
nonuniform but steady surface rotation (Megaridis et al. 1994). 
The nonrotational motion seen in Figure 7 for both phases may 
influence heat transport, which, in turn, can affect evaporation 
rates. 

Transient heat transfer in rotational flows has been studied 
by Kreith et al. (1963) who used small metal spheres and consid- 
ered uniform temperature distribution in the solid. The transient 
temperature variations along r at 0 = 90 ° are shown in Figure 8 
for the base case calculation. The displayed profiles are repre- 
sentative of those at other polar angles as well, and clearly 
demonstrate a nonuniform temperature distribution in both 
phases. As expected, the droplet is heated up from its surface to 
the core, while the gas is cooled down in the vicinity of the 
droplet. The diminishing radial gradients of temperature above 
the gas/droplet interface suggest that the heat flux to the 
droplet interior decreases with time. The temperature fields in 
the entire domain are shown in Figure 9. The isotherms in the 
gas (Figure 9A) maintain a nearly concentric circle shape, thus 
indicating that heat transfer along the radial coordinate in the 
gas phase is dominated by heat conduction. Within the droplet 
(Figure 9B), heat conduction is again the main mechanism of 
heat transfer along r. The effect of the induced secondary 
motion on heat transfer in both phases appears to be negligible 
under the base case conditions. 

The surface-average Nusselt number is expressed as 

2k t sin 0 dO 
lq-u= o ar }s (26) 

k j r g ~ -  rt ..... ) 

where the subscript av indicates surface-averaged value. The 
temporal variation of lq~ for the base case is shown in Figure 10. 
With the exception of the early stages, the average Nusselt 
number is almost constant, and very close to the value of 2, 
consistent with Stokes's theory (White 1991). This result confirms 
that the swirling flow in the base case droplet has negligible 
impact on heat transfer. 
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The influence of Reg = rZfloPg/l~g on the strength of the 
induced secondary motion was examined• The base case value of 
r0Zlq0 was modified to obtain a range of values for Reg. All other 
parameters were identical to those considered in the base case 
simulation• The azimuthal and polar shear stress distributions 
along 0 are shown in Figure 11 for Reg = 0.045, 0.41, 4•5, and 
18.1• The shown distributions correspond to the instant (in each 
simulation) where the azimuthal rotation frequency at the equa- 
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Figure 8 Transient temperature radial profiles at 0 = 90 ° in 
both phases for the base case calculation; Reg = 0.41 

tor has dropped to 50% of its initial value• This instant defines 
the characteristic deceleration time rc, which is used in the 
following to quantify droplet deceleration behavior• As seen in 
Figure l lA,  the azimuthal shear stress distribution changes 
slightly with Reg. In contrast, the polar shear stress (Figure l iB) 
changes dramatically and increases monotonically with Reynolds 
number. The results demonstrate that the secondary motion is 
strengthened at increased Reg. 

Figure 12 presents the characteristic deceleration time versus 
initial Reynolds number and shows that % is linearly dependent 
on Reg. If the initial rotating frequency is constant, from the 
definition of the Reynolds number it is deduced that % is 
proportional to the square of the droplet radius. It is known that 
the characteristic deceleration time depends on the friction 
torque acting on the interface as well as on the initial kinetic 
energy of the droplet• In fact, % is expected to be proportional to 
kinetic energy and inversely proportional to friction torque• 
From Equation (25) and the fact that the dimensional torque is 
normalized with respect to (l/2)pgrSol) 2, one deduces that, for 
the same initial rotating frequency, the dimensional torque is 
proportional to the cube of the droplet radius and the integral of 
azimuthal shear stress on the interface• As seen in Figure l lA,  
the induced secondary motion does not have significant effects 
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on azimuthal velocity distribution, and the azimuthal shear 
stresses for various Reynolds numbers do not change by much. 
Therefore, the dimensional torque is proportional to the cube of 
the droplet radius. On the other hand, the kinetic energy of the 
rotating droplet is proportional to the fifth power of the droplet 
radius for the same initial rotating frequency. From the above 
physical arguments applied for constant initial rotation fre- 
quency, it is apparent why the characteristic deceleration time % 
increases in linear proportion to the square of the droplet radius, 
and in turn, to the rotational Reynolds number (Figure 12). 

For constant droplet size and unchanged ambient conditions, 
the values of Reg can be modified by adjusting the droplet 
rotation speed. In that case, both Reynolds number and nondi- 
mensional time are proportional to the initial rotation velocity; 
therefore, the iinearity of % with Re~ (Figure 12) is expected. 
Furthermore, the linear % versus Reg behavior also suggests that 
the dimensional characteristic deceleration time t c for constant 
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droplet size does not vary with rotation speed (or Reynolds 
number) within the Reynolds number range considered herein. 

The linear % versus Re s (or tcfl 0 vs. r2fl0PJixg) behavior of 
Figure 12 infers that the dimensional characteristic deceleration 
time t c is proportional to the square of the droplet radius. The 
empirical relation between the droplet radius (r 0, m) and the 
dimensional characteristic deceleration time (t~, seconds) was 
obtained as t~ = 1.11 × 106r02, where the proportionality coeffi- 
cient was determined by averaging six cases within the droplet 
size range from 25 p~m to 2000 Ixm and ambient conditions of 
1000 K and 1 atm. 

Let us now consider a droplet radius of 100 p~m and an initial 
spinning frequency of 30 Hz, as values typical of spray combus- 
tion applications. For an ambient of 1000 K, 1 atm, and an initial 
droplet temperature of 280 K, the model predicted a dimension- 
less characteristic time % = 2.1 for 50% rotational deceleration. 
At that instant, the average droplet-surface temperature was 
422 K, which is lower than the wet bulb temperature of com- 
pounds in Diesel oil and heavy oil fuels. Thus, the numerical 
results indicate that the rotational deceleration process lasts for 
the entire liquid heating period which persists over a good 
portion of the droplet evaporation lifetime. Sirignano (1983) 
reported that for fuel droplets of practical interest (25 p~m and 
up), the time for velocity relaxation due to drag is comparable or 
greater than the droplet lifetime. It is, therefore, anticipated that 
under the conditions considered herein, the droplet rotational 
deceleration time and the translational relaxation time due to 
drag are comparable. This was verified by performing an addi- 
tional calculation to estimate the response time of a translation- 
ally moving droplet. The approach of Chin and Lefebvre (1985) 
for single-droplet evaporation in a convective field was followed. 
In this calculation, the initial n-decane droplet velocity, tempera- 
ture and radius were 20 m/s ,  280 K, and 100 I~m, respectively. 
The surrounding quiescent gas-phase conditions were 1 atm and 
1000 K. It was found that the droplet decelerated to half of its 
initial translational velocity (10 m/s )  in 0.011 s, or 2.1 (normal- 
ized by 1/fI0; i.e., 1/60xr). Consequently, both rotational and 
translational deceleration can co-exist during a large portion of 
the transient droplet heatup period and should be considered 
simultaneously in spray calculations involving rotation super- 
imposed on translation. 

Thermocapillary f low effects 

The droplet temperature distributions displayed in Figure 9B are 
representative of rotational configurations relevant to spray com- 
bustion at atmospheric pressure; Reg = O((3.1). As stated previ- 
ously, the radial heat transport under these circumstances is 
dominated by conduction and the temperature along the 
gas/liquid interface is practically uniform. To this end, thermo- 
capillary terms in the droplet-surface stress balance can be safely 

neglected. However, larger values of the rotational Reynolds 
number induce stronger secondary motion (Figure l lB)  which is 
capable of causing appreciable temperature gradients along the 
gas/liquid interface, and in turn, triggering thermocapillary 
motion. 

Steady-state droplet thermocapillary flows have been studied 
theoretically by Jayaraj et al. (1981) as well as by Lozinski and 
Matalon (1993). In Jayaraj et al., the induced secondary motion 
within a nonrotating and nonvaporizing droplet was examined by 
imposing a prescribed temperature distribution on the droplet 
surface. Lozinski and Matalon (1993), on the other hand, used 
analytical methods to study thermocapillary motion in a spinning 
vaporizing droplet under conditions of weak rotation. 

When the thermocapillary effect is taken into account, all 
governing equations describing the flow of Figure 1 are identical 
to those given in the previous section, except for the polar shear 
stress balance given by Equation 11. The temperature depen- 
dence of the surface tension coefficient tr of a liquid is expressed 
by 

o, = err - 7 ( T  - T r )  ( 2 7 )  

where crr is the value at the reference temperature Tr, and ~/ 
defines the sensitivity of cr to temperature (-y = - d c r / d T ) .  In 
this study, a constant value of ~/= 10 -4 N / m K  was used, as 
being representative of most hydrocarbon fuels (Vargaftik 1975). 
Because the secondary motion affects the temperature distribu- 
tion only along the polar coordinate of the droplet surface, the 
corresponding shear stress balance equation becomes 

r v0 v01 [ v0, v ,l 
IXt[ -~r r s = I~g Or r Js l~or o ¢90 (28) 

Equation 28 shows that surface tension variation due to tempera- 
ture nonuniformity on the interface drives the flow from hot to 
cool regions (Marangoni flow). In the present investigation, the 
droplet shape is assumed to remain spherical, and, thus, the 
normal stress balance at the surface is ignored. 

Millimeter-sized droplets are frequently used in laboratory 
experiments. Because such droplets (when rotating) are associ- 
ated with larger values of Re s, it is expected that the thermocap- 
illary effect may be more significant in these cases. The numeri- 
cal simulations described in the following correspond to a rela- 
tively large droplet compared with droplet sizes representative of 
practical spray combustion applications. The droplet has a radius 
of 2 ram, and initially rotates around its diameter at 30 Hz. All 
other conditions are the same as those considered in the base 
case calculation. The initial rotational Reynolds number Reg is 
18. This calculation was pursued up to T = 820, when the liquid- 
phase temperatures became high enough to render the nonevap- 
oration assumption invalid. 

A comparison is conducted below between the model predic- 
tions when the surface tension gradients are taken into account 
(~/= 10 -4 N/mK) and when they are neglected (~t = 0). Figure 
13 shows the temperature distributions on the droplet surface 
along 0 for both cases at • = 96 and T = 336. When neglecting 
thermocapillary effects (7 = 0), the droplet surface temperature 
decreases monotonically from the pole (~ = 0) to the equator 
(0 = 90°). The induced gas swirling flow brings hot air towards 
the pole along the axis of rotation (Figure 7A), and, conse- 
quently, the heat flux from the gas to the liquid is higher near 
the pole. It is noteworthy that the droplet-surface temperature 
difference increases as time proceeds; compare the curve at 
"r = 96 with that at ,r = 336 in Figure 13. Figure 13 also shows 
that the droplet-surface temperature profiles for ~/= 10 -4 N / m K  
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Figure 13 Comparison of droplet-surface temperature dis- 
tributions along 0 for Reg = 18; curves with and without 
thermocapil lary stresses (3' = 10 -4 N/mK, 3' = O, respec- 
tively) are shown at r = 96 and 336 

are much flatter than those with 3' = 0. The temperature-induced 
thermocapillary stress results in fluid motion on the droplet 
surface from the pole to the equator, thus enhancing heat 
transfer along 0, and in turn, making the droplet-surface temper- 
ature distribution more uniform (see solid curves in Figure 13). 

Figure 14 shows polar velocity profiles on the droplet surface 
at three different instances (r  = 96, 336 and 672) of the calcula- 
tions with 3' = 10 -4 N / I n K  and 3' = 0. The polar velocities for 
3' = 10 -4 N / m K  are by one order of magnitude higher than 
those for 3' = 0. The significant increase in these velocities is 

attributed to the influence of thermocapillary stresses. Although 
thermocapillary motion was found to increase droplet-surface 
polar velocities significantly, the dominant mechanism of heat 
transfer within the droplet was still heat conduction. On the 
other hand, the swirling flow in the gas phase for Reg = 18, 
3 '=  10 -4 N / I n K  was found to enhance heat transfer; see 
isotherms in Figure 15A and compare with those of Figure 9A 
(Reg = 0.41, 3' = 0). Thus, it is concluded that the induced sec- 
ondary motion in the gas becomes important as the rotational 
Reynolds number increases. Figure 15B depicts the secondary 
motion in the liquid phase in terms of instantaneous particle 
pathline projections on an azimuthal plane at an instant r = 144. 
The influence of both dynamic spindown and thermocapillary 
stresses is demonstrated by the two counterrotating flow struc- 
tures; the one near the droplet surface is driven by thermocapil- 
lary stresses, while the other closer to the core of the droplet is 
dominated by the convective spindown mechanisms. When the 
rotating droplet is suddenly exposed to the hot ambient, the 
temperature on the droplet surface near the pole (0 = 0 °) is 
higher than that near the equator (0 = 90°); see Figure 13. This 
triggers thermocapillary motion on the droplet interface driving 
fluid parcels from the pole to the equator, thus enhancing the 
convective heat transport on the droplet surface, and in turn, 
causing more uniform temperature distribution (see Figure t3). 
Although the polar temperature gradients are eliminated early 
on by this action, the thermocapillary motion does not disappear 
immediately because of the fluid inertial forces. 
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Figure 14 Polar velocity profiles on the droplet surface at 
three different instances (T = 96, 336, and 672) of the calcu- 
lations with (A) 3" = 10 -4 N/mK and (B) 3, = 0 

C o n c l u s i o n s  

A modeling study of the spindown flow induced when a rotating 
droplet is suddenly exposed to an initially undisturbed infinite 
fluid has been conducted. The droplet enters the hot gas rotating 
about a central axis and has no translational motion with respect 
to the suspending medium. The coupled unsteady Navier-Stokes 
and energy equations were solved using finite-difference dis- 
cretization techniques and a numerical solution procedure. The 
model was verified first by considering a rotating solid-sphere 
configuration which has been studied extensively in the past. 

The model predictions showed that helical internal flows 
appear within a rotating droplet during spindown. A freely decel- 
erating droplet induces a nonrotational motion to the surround- 
ing gas, which is drawn towards the pole and directed outwards 
along the equator plane. The Reynolds number has significant 
effects on the strength of the secondary (nonrotational) motion. 
For droplet sizes and rotation frequencies representative of 
droplet combustion applications; i.e., Reynolds ~ O(0.1), the 
secondary motion in both phases remains weak, and heat trans- 
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Figure 15 (A) Instantaneous thermal field in gas phase at ~=  96; (B) secondary motion in the liquid phase in terms of 
instantaneous particle pathline projections on an azimuthal plane at ==  144; both frames correspond to Reg= 18 and 
3" = 10 -4 N/mK 
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port is conduction-dominated. On the other  hand, at increased 
values of the rotational Reynolds number,  the secondary motion 
is s trengthened and affects energy transport  in both  phases. The 
characteristic time for droplet spindown was found to be propor- 
tional to the square of droplet radius and independent  of the 
initial rotation frequency. The simulations also showed that the 
characteristic time for rotational deceleration is of the same 
order of magnitude with the estimated translational response 
time of a droplet. Consequently, both  rotational and translational 
deceleration can co-exist during a large portion of the transient 
droplet heatup period and should be considered simultaneously 
in spray calculations involving rotation and translation. Finally, 
thermocapillary stresses were found to smear temperature  gradi- 
ents on the droplet surface for large rotational Reynolds num- 
bers; O(10). At  these conditions, the Marangoni  stresses have 
significant impact on the fluid dynamical and heat  t ransport  
processes and, thus, cannot  be neglected. 
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